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Abstract
Binding energies of the 1s and 2p± states of a heavy-hole Wannier exciton are
calculated in an infinite-length cylindrical GaAs–Ga1−xAlxAs quantum wire,
under the action of a magnetic field applied in the axial direction of the wire.
The calculations are made using a variational method and the effective-mass
approximation for a finite confinement potential. Also, the transition energies
1s → 2p± are calculated for the same system. We have found that 2p± states
are not bounded for some values of the radius of the wire and of the applied
magnetic field. We show how the applied magnetic field splits the degeneracy
of the states with n = 2. Our results are compared with those obtained by other
authors and with recent experimental results.

1. Introduction

Correlated electron–hole pairs form excitons in semiconductor heterostructures. The electron–
hole interaction in semiconductor nano-structures is increased for the geometrical confinement,
which increases the overlap of the electron and hole wave functions. The size of the nano-
structure and the height of the confinement potential as well as electric and magnetic fields
determine this overlap. For example the binding energy of the exciton increases when the
dimensionality of the system is diminished. The optical properties of direct gap semiconductors
reveal the existence of excitons as well as the different transitions between their excited
states. Lerner and Lozovik [1] investigated, for the first time, the properties of excitons in
low-dimensionality systems in the presence of a high magnetic field in 1978, a matter that has
been the reason for numerous investigations from then on. The structure of the excitons in
wells and wires has been revealed by means of extensive studies of interband spectroscopy
of one and two photons [2], studies of the photoluminescence excitation spectra (PLE) of
resolved polarization [3], magnetophotoluminescence [4] and photoluminescence (PL) [5].
Černe et al [6] have investigated the terahertz dynamics of magnetoexcitons in GaAs/GaAlAs
undoped multiple quantum wells (MQWs) under magnetic fields applied perpendicular to
the well interfaces, and observed resonant far-infrared (FIR) absorption by the confined
magnetoexcitons. They have assigned to the 1s → 2p+ intraexcitonic transition of the heavy-
hole exciton the dominant resonance in GaAs/Ga0.7Al0.3As MQWs. The absorption feature
was found to persist even when the FIR electric field is comparable to the electric field that binds
the exciton. Salib et al [7] made a detailed optically detected resonance (ODR) experimental
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study of internal transitions of confined magnetoexcitons in two GaAs/Ga0.7As0.3Al MQW
structures (125 Å well/150 Å barrier, and 80 Å well/150 Å barrier), with several resonances
assigned to 1s → 2p+, 1s → 3p+ and 1s → 4p+ internal excitonic transitions. Duque et al [8]
have studied the internal transitions of confined magnetoexcitons in GaAs–(Ga, Al)As quantum
wells, finding that it is necessary to include the hole subband mixing in order to have a good
agreement with the experimental work reported by Černe et al [6].

Gang et al [9] calculated the ground-state binding energy of an exciton confined in a
cylindrical quantum wire in the presence of a magnetic field applied in the axial direction,
finding that the binding energy increases with the applied magnetic field. In [5], Someya et al
reported the photoluminescence spectra of a series of T-shaped GaAs quantum wires (QWWs),
by means of which they calculated the ground-state binding energy of a one-dimensional
exciton, finding that it is enhanced upon increasing the one-dimensional confinement.

Glutsch and Chemla [10] have calculated the optical absorption of QWWs for a large
variety of wire radius. Optical absorption of wide quantum wires has been studied by Forshaw
and Whittaker [11] to investigate the exciton binding energy as well as the oscillator strength
as a function of confinement. Graf et al [12] calculated binding energies and linear-optical
properties of quasi-one-dimensional excitons in a quantum wire in strong magnetic fields,
using a one-dimensional parabolic potential, finding that magnetoexciton states are bound and
possess a hydrogenic spectrum with an infinite number of bound states and a continuum of
scattering states at higher energies. Xia and Cheah [14] calculated the binding energy of the
ground-state exciton in T-shaped quantum wires, demonstrating that no one-dimensional hole
confinement is necessary for the formation of a one-dimensional exciton. Xia and Cheah [14]
studied exciton states in isolated and semi-isolated QWW, finding that the image charges have
a large effect on the effective Coulomb potential in wires. In isolated wires they found that
the exciton binding energy is about ten times as large as in the quantum well. Bayer et al [15]
made systematic studies of the effect of confinement and reduced dimensionality on excitons
in GaAs–(In, Al)As QWWs and in QDs. Within the variational approach they calculated
the exciton binding energies and the diamagnetic shift, finding very good agreement with
experiment. Siarkos and Runge [16] made numerical multiband calculations of quantum-wire
excitons including valence band k · p coupling. These are based on a real-space formulation.

In this work, using the effective-mass approximation within the variational approach, we
calculate the binding energy of the 1s and the 2p± excited states, as well as the transition
energies associated with the 1s and 2p± states of an exciton located in a cylindrical GaAs–
Ga1−xAlxAs QWW under the action of a magnetic field applied in the axial direction. The
quantum wire length is large enough to consider that the motion of the carriers is free in the
axial direction. In section 2 we present the theory followed for this calculation. Our results
and discussion are presented in section 3 and conclusions are summarized in section 4.

2. Theory

We consider a heavy-hole Wannier exciton confined in a cylindrical quantum wire of
GaAs/Ga0.7Al0.3As under the action of a magnetic field, applied in the axial direction of
the wire. Using the effective-mass approximation and a variational scheme, the Hamiltonian
of a correlated electron–hole pair is written as

H = 1

2me

[
Pe +

e

c
Ae

]2

+
1

2mh

[
Ph − e

c
Ah

]2

− e2

ε|re − rh| + Ve(ρe) + Vh(ρh) (1)

where

|re − rh| =
√
ρ2
e + ρ2

h − 2ρeρh cos(ϕe − ϕh) + z2 (2)
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is the separation of the electron–hole pair, ε is the dielectric constant of GaAs, me and mh are
the effective masses of the electron and of the heavy hole, respectively. z is the separation,
(ze − zh), of the electron and the heavy hole in the axial direction of the wire. Ae(h) is the
vector potential of the magnetic field that is expressed as

Ae(h) = B × re(h)

2
(3)

with B = Bz; the components of the vector potential in cylindrical coordinates are
Aρ = Az = 0, Aϕ[e(h)] = Bρe(h)/2, and the confinement potential of the carriers is

Ve(h)(ρe(h)) =
{

0 ρe(h) � R

V0 ρe(h) > R.
(4)

Ve, Vh are the confinement potentials of the electron and hole, respectively. In our
calculations we use the values for Ve, Vh given in [17, 18] as a function of the energy gap
as follows:

Ve =
{

0.85 Eg
0.60 Eg

Vh =
{

0.15 Eg
0.40 Eg

Eg = 1.155x + 0.37x2. (5)

As done by Gang et al [9], the trial wave functions are chosen as the product of a hydrogenic
function and radial solutions of a carrier in the state of lower energy, in a cylindrical box under
the action of a magnetic field. In this way, the wave function for any state is given by

�(re, rh) =




N exp

[
−ξe + ξh

2

]
1F1(a01(e) , 1, ξe)

×1F1(a01(h) , 1, ξh)�nlm(r, λnl) ρe(h) � R

N
1F1(a01(e) , 1, ξR(e) )

U(a′
01(e)
, 1, ξR(e) )

exp

[
−ξe + ξh

2

]
×U(a′

01(e) , 1, ξe)1F1(a01(h) , 1, ξh)

×�nlm(r, λnl) ρe > R and ρh � R

N
1F1(a01(h) , 1, ξR(h) )

U(a′
01(h)

, 1, ξR(h) )
exp

[
−ξe + ξh

2

]
×1F1(a01(e) , 1, ξe)U(a

′
01(h) , 1, ξh)

×�nlm(r, λnl) ρe � R and ρh > R

N
1F1(a01(e) , 1, ξR(e) )

U(a′
01(e)
, 1, ξR(e) )

1F1(a01(h) , 1, ξR(h) )

U(a′
01(h)

, 1, ξR(h) )

× exp

[
−ξe + ξh

2

]
U(a′

01(e) , 1, ξR(e) )

×U(a′
(h), 1, ξ(h))�nlm(r, λnl) ρe and ρh > R

(6)

where ξe(h) = (me(h)γe(h)/2µ)ρ2
e(h) and ξR(e)(R(h)) = me(h)γe(h)R

2
e(h)/2µ. µ is the reduced

mass of the heavy-hole exciton and �nlm(r, λnl) are hydrogenic wave functions. Equation (6)
satisfies the boundary conditions (∂�int/∂ρe(h))|ρe(h)=R = (∂�ext/∂ρe(h))|ρe(h)=R , where a01e(h)
and a′

01e(h)
are determined in the appendix. The effective masses of the carriers are assumed

constant (with their values in GaAs) in both materials. mh and µ can be expressed in terms of
the Kohn–Luttinger band parameters γ1 and γ2 [17, 19] as

1

mh
= 1

m0
(γ1 − 2γ2)

1

µ
= 1

me
+

1

m0
(γ1 + γ2).

(7)
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We have assumed that the dielectric constant is the same in the two semiconductors. The
hydrogenic wave functions are given by

�1s = exp[−λ1s |re − rh|]
�2p± = ρ|m|/2

e ρ
|m|/2
h exp[im(ϕe − ϕh)] exp[−λ2p±|re − rh|]. (8)

The binding energy Eb(R,B) for the exciton is defined as the difference between the
ground-state energy of the uncorrelated electron–hole system and the total energy of the
correlated electron–hole pair, that is

Eb(R,B) = E0e + E0h − 〈H(R,B)〉. (9)

E0e and E0h are the energies of the ground-state subbands for the electron and hole,
respectively. These subband energies are determined solving numerically the transcendental
equations for the electron and hole in each case:

1F1(a01e(h) , 2, ξR)

1F1(a01e(h) , 1, ξR)
+
a′

01e(h)

a01e(h)

U(a′
01e(h)

+ 1, 2, ξR)

U(a′
01e(h)

, 1, ξR)
= 0. (10)

For computational purposes the binding energy, Eb(R,B), is expressed in rydbergs
(R∗ = h̄2/2µa2

0), where a0 is the exciton effective Bohr radius. The values of the physical
parameters for GaAs [17] used in our calculations areme = 0.067m0, the effective mass of the
electron, and mh = 0.135m0, the effective mass of the hole, where m0 is the bearing electron
mass. ε = 12.5, γ1 = 7.36 and γ2 = 2.57, µ = 0.0447m0. Following Gang et al [9], we have
assumed an isotropic hole mass for mathematical convenience as

1

mh
= 2

3mh(x, y)
+

1

3mh(z)
. (11)

3. Results and discussion

In figure 1 we present the exciton binding energy,Eb, for the 1s state as a function of the radius
of the wire and for several values of the applied magnetic field. The confinement potentials are
0.85 Eg and 0.15 Eg for the electron and the heavy hole, respectively. The Al concentration
is x = 0.3. For a given value of the magnetic field, the binding energy increases from its
value in bulk (GaAs) as the radius of the wire decreases, reaching a maximum value, and then
decreases to the value of the binding energy in the bulk of GaAlAs. This behaviour is due to
the compressing of the excitonic wave function as the radius of the wire is diminished. For
small values of the wire radius, the wave function begins to leak toward the GaAlAs material
and the binding energy diminishes until it attains the characteristic value of the binding energy
in the bulk of GaAlAs. For a given radius of the wire the binding energy increases with the
magnetic field due to the increase in the compression of the wave function.

In figure 2 we display the binding energy for the 1s state of a heavy-hole exciton as a
function of the radius of the wire and for several values of the applied magnetic field. The
confinement potentials are 0.60Eg and 0.40Eg for the electron and the heavy hole, respectively,
with the Al concentration equal to 0.3. The qualitative behaviour of the binding energy is similar
to that in the previous case (figure 1). For values of the radius R > 1 a0, the binding energy in
both figures has approximately the same value. The maximum of the binding energy is lower
in figure 2 than in figure 1 and it is found for higher radius of the wire. Effectively, for radius
of the wire R > 1 a0, the exciton feels approximately the same confinement potential, while
for R < 1 a0, the exciton experiences the 0.6 Eg and 0.4 Eg electron and hole confinement
potentials as if it were less confined than in the 0.85Eg and 0.15Eg confinement potential case.
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Figure 1. Binding energy, Eb , of a heavy-hole Wannier exciton in a cylindrical GaAs–(Ga, Al)As
quantum-well wire as a function of the radius and for two values of the applied magnetic field. The
confinement potentials for the electron and hole are 0.85 Eg and 0.15 Eg , respectively.

Figure 2. Binding energy, Eb , of a heavy-hole Wannier exciton in a cylindrical GaAs–(Ga, Al)As
quantum-well wire as a function of the radius and for three values of the applied magnetic field.
The confinement potentials for the electron and hole are 0.60 Eg and 0.40 Eg , respectively.

When the exciton is less confined, the maximum of the binding energy is found at larger radius
and with a lower energy value.
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Someya et al [5] determined in T-shaped quantum wires of GaAs/GaAlAs and of cross
section 5 nm × 5 nm (that would correspond to a radius of 28 Å in a cylindrical wire) that the
binding energy is 17±3 meV (4.36±0.77R∗). Weman et al [3] reported measurements of the
binding energy of excitons in coupled quantum wire arrangements directly determined from
magnetoexciton excitation spectra (PLE). They found that the binding energy is 13.5±0.5 meV
(3.46 ± 0.13 R∗). Our results are in very good agreement with those of Someya et al [5]
and higher than those of Weman et al [3]. This is because the T-shaped structure confines
the excitons as efficiently as a cylindrical quantum wire, while in a superlattice the exciton
confinement is weaker than in the structures mentioned above.

In figure 3 we present the binding energy of the 2p− state of the exciton as a function of
the radius of the wire and for three values of the magnetic field. We observe that this state
is unbounded in wires with radius less than 1.5 a0 and 1.75 a0 for magnetic fields of 10 and
5 T, respectively. Also, there exists a crossover in the binding energy for these values of the
magnetic field when the radius of the wire is close to 2.1 a0.

Figure 3. Binding energy of the 2p− state of a heavy-hole Wannier exciton in a cylindrical GaAs–
(Ga, Al)As quantum-well wire as a function of the radius and for three values of the applied magnetic
field. The confinement potentials for the electron and hole are 0.60 Eg and 0.40 Eg , respectively.

The binding energy of the 1s and 2p± excitonic states as a function of the magnetic field
in a wire of radius equal to 300 Å is shown in figure 4. The binding energy of the 1s state of
the exciton presents a small linear increase with the magnetic field because the excitonic wave
function is not strongly confined by relatively large magnetic fields. In our calculations the
excitonic effective Bohr and cyclotronic radii are approximately the same for the high magnetic
fields we use in this work. The binding energy of the 2p− state increases with the magnetic
field and it is unbounded for magnetic fields smaller than 3 T. Also, it is seen that in a QWW
of radius equal to 300 Å, the 2p+ state is unbounded for all the values of the magnetic field.

In figure 5 we present the energies for the transitions 1s → 2p− and 1s → 2p+ as a
function of the applied magnetic field. We observe that the energy for the transition 1s → 2p+

is higher than that for the transition 1s → 2p− for all the values of the magnetic field. These
transition energies are higher than those in quantum wells [8] and in bulk material.
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Figure 4. Binding energy, Eb , of different states of a heavy-hole Wannier exciton in a cylindrical
GaAs–(Ga, Al)As quantum-well wire of radius R = 300 Å as a function of the magnetic field
applied in the axial direction of the wire.

Figure 5. 1s → 2p−, 1s → 2p+ transition energies of a heavy-hole Wannier exciton in a cylindrical
GaAs–(Ga, Al)As quantum-well wire of radius R = 300 Å as a function of the magnetic field
applied in the axial direction of the wire.

4. Conclusions

In this work we have calculated the binding energies of the 1s and 2p± states of a heavy-hole
Wannier exciton in an infinite-length cylindrical GaAs–Ga1−xAlxAs quantum wire, under the
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action of a magnetic field applied in the axial direction of the wire. The calculations have
been made using the effective-mass approximation within a variational scheme and for a finite
confinement potential. Also, we have calculated the 1s → 2p± transition energies for this
system. We have found that 2p± states are not bounded for some values of the radius of the
wire and of the applied magnetic field. We have shown that the applied magnetic field splits
the degeneracy of the states with n = 2. Our theoretical results for the excitonic ground
state compare quite well with some recent experimental reports. We believe our results are of
importance in the quantitative understanding of future experimental work in this field.

Appendix

We consider a carrier of charge q in a cylindrical box of radius a, height b and dielectric
constant ε. The carrier experiences a radial finite confinement potential V (ρ) and an infinite
confinement potential in the faces of the box. If the carrier is a hole, q = +e and if it is an
electron, q = −e. A uniform magnetic field is applied in the axial direction of the box. In the
effective-mass approximation, the Hamiltonian of the carrier is expressed as

H = 1

2m∗
[
P − q

c
A

]2
+ V (ρ) (A1)

where the first term of equation (A1) is the carrier’s kinetic energy in a magnetic field and the
last term is the confinement potential in the radial direction. The vector potential is written as
A(r) = 1

2 (B × r) with B = Bz. In cylindrical coordinates, its components are

Aρ = Az = 0 Aϕ = 1
2 (Bρ). (A2)

On expanding the parenthesis of equation (A1), the Hamiltonian takes the form

H = 1

2m∗

[
P 2 − q

c
BLz +

q2

c2

(
B2ρ2

4

)]2

+ V (ρ) (A3)

where Lz = −ih̄∂/∂ϕ in equation (A3) and the Hamiltonian is written as

H = − h̄2

2m∗ ∇2 +
iqh̄B

2m∗c
∂

∂ϕ
+
q2B2ρ2

8m∗c2
+ V (ρ). (A4)

In order to express the Hamiltonian in atomic units of length, a0 = εh̄2/µe2, and of
energy, R∗ = h̄2/2µa2

0 , we define the lengths ρ = ρa0 and z = za0. In these units and in
cylindrical coordinates the carrier’s Hamiltonian is

H = H

R∗ = −µ
m

∇2 ∓ iγ
∂

∂ϕ
+
m

µ

γ 2ρ2

4
+ V (ρ). (A5)

In this equation, γ is the energy of the carrier in a magnetic field in the first Landau level
(n = 0), and is given by

γ = qh̄B

2mcR∗ . (A6)

Expressing the Laplacian in cylindrical coordinates, equation (A5) is written in the
following way:

H = −µ
m

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
+
∂2

∂z2

]
∓ iγ

∂

∂ϕ
+
m

µ

γ 2ρ2

4
+ V (ρ). (A7)
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The time-independent Schrödinger equation is H� = E�, whose solutions can be
written in a product form as ψ(ρ, ϕ, z) = R(ρ, ϕ)Z(z). In the time-independent Schrödinger
equation, we substitute RZ for � and divide the total equation by RZ, giving

−µ
m

1

R

1

ρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
− µ

m

1

R

1

ρ2

∂2R

∂ϕ2
∓ iγ

R

∂

∂ϕ
+
µ

m

γ 2ρ2

4
+ V (ρ)− E = µ

m

1

Z

d2Z

dz2
. (A8)

The function Z is governed by the differential equation

µ

m

1

Z

∂2Z

∂z2
= −K2 (A9)

where −K2 is a constant. It is demanded that Z(z) is zero on the faces of the cylinder,
Z(−b/2) = Z(b/2) = 0, which gives us the particular solution of equation (9),

Z(z) = A cos

(√
m

µ
Kz

)

where k = πn/b, and n = 1, 2, . . .. The differential equation for R(ρ, ϕ) is

−µ
m

1

R

1

ρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
− µ

m

1

R

1

ρ2

∂2R

∂ϕ2
∓ iγ

R

∂R

∂ϕ
+

(
µ

m

γ 2ρ2

4
+ V (ρ)− [E −K2]

)
= 0

(A10)

with Eρ = E − K2. Substituting in this equation r(ρ)2(ϕ) for R(ρ, ϕ) and dividing by
r(ρ)2(ϕ), we obtain for the total differential equation

−µ
m

1

r

1

ρ

∂

∂ρ

(
ρ
∂r

∂ρ

)
− µ

m

1

2

1

ρ2

∂22

∂ϕ2
∓ iγ

2

∂2

∂ϕ
+

(
µ

m

γ 2ρ2

4
+ V (ρ)− Eρ

)
= 0 (A11)

where we have supposed that2(ϕ) = eimϕ ,m being the eigenvalue of Lz in units of h̄, in such
a way that when 2 is substituted in equation (A11) and multiplied by −r we obtain for the
radial part of the differential equation

µ

m

1

ρ

∂

∂ρ

(
ρ
∂r

∂ρ

)
−

(
m2

ρ2
−mγ +

m

µ

γ 2ρ2

4
+ V (ρ)− Eρ

)
r = 0. (A12)

With the purpose of expressing this differential equation in a well known form, we make
the changes of variables

x = m

µ
ρ2 dx = 2ρ

m

µ
dρ

∂r

∂ρ
= ∂x

∂ρ

∂r

∂x
= 2ρ

m

µ

∂r

∂x
(A13)

with which we obtain the differential equation

4
∂

∂x

(
x
∂r

∂x

)
−

(
m2

x
−mγ +

γ 2x

4
+ V (x)− Eρ

)
r = 0. (A14)

The solution suggested for r(x) is

r(x) = e−βxx|m|/2χ(x). (A15)

After some simplifications we obtain for this differential equation

4x
∂2χ

∂x2
+ 4(1 + |m| − 2βx)

∂χ

∂x
+


 4β2x − 4β − 4β|m| +mγ − γ 2x

4
−V (x)− Eρ


χ = 0. (A16)
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In order to determine β we choose

4β2x − γ 2x

4
= 0 (A17)

which gives

β = |γ |
4
. (A18)

With this done, and with the change of variable

y = γ x

2
(A19)

we obtain the differential equation whose solutions are the confluent hypergeometric functions
F(a|m|j , b, y):

y
∂2F

∂y2
+ (1 + |m| − y)

∂F

∂y
−

[
1

2
(1 + |m|)± m

2
+
(V (y)− Eρ)

2γ

]
F(y) = 0. (A20)

Expressed in a concise way, equation (A20) takes the form

y
∂2F

∂y2
+ (b − y)

∂F

∂y
− aF(y) = 0. (A21)

In equation (A20) the sign + (−), in the term ±m/2, corresponds to the electron (hole).
If the carrier is inside the box, the solution of equation (A20) is the confluent hypergeometric
function 1F1(a|m|j,int , b, y), where a|m|j corresponds to the state with magnetic quantum
number |m|; otherwise, if the carrier is outside, the solution is the confluent hypergeometric
function U(a|m|j,ext , b, y). Comparing (A20) and (A21) we found that b = 1 + |m| and a|m|j
are given by

a|m|j,ext =
V − Eρ

2γ
+

1

2
+

|m|
2

± m

2

a|m|j,int = −
Eρ

2γ
+

1

2
+

|m|
2

± m

2
(A22)

a|m|j,ext − a|m|j,int = V

2γ
.

For example, the a|m|j are

a|m|j,ext =
V − Eρ

2γ
+

1

2
+

|m|
2

+
m

2

a|m|j,ext =
V − Eρ

2γ
+

1

2
+

|m|
2

− m

2

(A23)

for the electron and hole, respectively.
The energy eigenvalues of the carrier wave function are determined by the continuity of

the wave functions and of its first derivative at the boundaries:

�int (ρ, ϕ, z)|ρ=a = �ext (ρ, ϕ, z)|ρ=a
∂�int (ρ, ϕ, z)

∂ρ

∣∣∣∣
ρ=a

= ∂�ext (ρ, ϕ, z)

∂ρ

∣∣∣∣
ρ=a
.

(A24)

If the radial confinement potential is infinite, the value of a|m|j,int is determined by the
boundary condition for which the wave function is equal to zero at the surface of the box,
ρ = a, 1F1(a|m|j , 1 + |m|, ξa) = 0, where j is the j th zero of the confluent hypergeometric
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function and a = a/a0. Knowing the value of a|m|j,int , it is replaced in equation (A22) and the
energy of the carrier is determined by means of

Ea = 2γ

(
−a|m|j +

1

2
+

|m|
2

)
. (A25)

The E01 energy of the carrier is found by setting m = 0 in a|m|j,int , where j is the first
zero of the carrier’s confluent hypergeometric function, and is given by

E01 = γ (1 − 2a01). (A26)
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